Chapter 15 ACIDS AND BASES

These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests! To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

The author is providing these notes as an addition to the students reading the text book and listening to the lecture. Although the author tries to keep errors to a minimum, the student is responsible for correcting any errors in these notes.
Acids: have a sour taste. Turn litmus from blue to red, basic phenolphthalein from red to colorless
Bases: are bitter. Turn litmus red to blue [Blue = Base], phenolphthalein from colorless to pink.

	Acid	Base
Arrhenius	H^{+}, Proton Donor	OH^{-}, Hydroxide Donor
Bronstead-Lowry	H^{+}, Proton Donor	H^{+}, Proton Acceptor
Lewis	Accepts an Electron Pr	Donates an Electron Pr

1. Arrhenius Acid Base: Acid is a H^{+}donor, Base is an OH^{-}donor. H^{+}is really a Hydronium Ion $\mathrm{H}_{3} \mathrm{O}^{+}$

Water Soln: $\quad \mathrm{HCl}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl} \quad$ in water soln and products ionize
In Benzene: $\quad \mathrm{HCl}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl} \quad$ salt products is ppt
In Gas Phase $\quad \mathrm{HCl}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$
Reactions in Benzene and Gas Phase do not have a OH- donor!

A strong acid completely ionizes in aqueous solution to give $\mathrm{H}_{3} \mathrm{O}^{+}$
e.g. $\mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Hi}, \mathrm{HBr}, \mathrm{HCl}, \mathrm{HNO}_{3}$

A strong base completely ionizes in aqueous solution to give OH -
e.g. $\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}$

A weak acid is NOT completely ionized in aqueous solution: acetic acid $\mathrm{CH}_{3}-\mathrm{COOH} \leftarrow \rightarrow \mathrm{CH}_{3}-\mathrm{COO}^{-}+\mathrm{H}^{+}$
If you remember, the Net Ionic Equation for the reaction of an acid and a base is:

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} \quad \text { and the } \Delta \mathrm{H} \text { for this reaction is }-55.90 \mathrm{~kJ} / \mathrm{Mole} \mathrm{H}^{+}
$$

The reaction is exothermic, so it will go to completion!

2. Bronsted-Lowry Acid Base

An acid donates a proton in a proton transfer reaction
A base accepts the proton in a proton transfer reaction
$\mathrm{H}_{3} \mathrm{O}^{+}$is the proton donor, NH_{3} is the proton acceptor

In Benzene they are not ionized, HCl is the proton donor or acid.

In a reversible acid base reaction, both the forward and reverse reactions involve proton transfers. Students point out the acids and bases.

Conjugate acid base pair is the two species in an acid base reaction that differ by the loss or gain of a proton.

$\begin{aligned} & \mathrm{NH}_{3} \\ & \text { Base }\end{aligned}+\underset{\text { Acid }}{\mathrm{H}_{2} \mathrm{O}} \leftarrow \rightarrow \underset{\text { Acid }}{\mathrm{NH}_{4}^{+}}+\underset{\text { Base }}{\mathrm{OH}^{-}}$
NH_{3} and $\mathrm{NH}_{4}^{+} \quad$ differ by a proton, so NH_{3} and $\mathrm{NH}_{4}{ }^{+}$are the conjugate acid base pair The $\mathrm{NH}_{4}+$ is the conjugate acid \quad The NH_{3} is the conjugate base.

Example 15.1 Id the acid, base, conjugate acid-base pair
a. $\mathrm{HCO}_{3}^{-}+\mathrm{HF} \leftarrow \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{F}^{-}$
b. $\mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \leftarrow \rightarrow \mathrm{CO}_{3}^{-2}+\mathrm{H}_{2} \mathrm{O}$

Exercise 15.1 $\quad \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{CN}^{-} \leftarrow \rightarrow \mathrm{HCN}+\mathrm{HCO}_{3}^{-}$

An Amphiprotic species can act as an acid or a base. [Amphoteric]

Class Question: Write the Amphoteric ionization of water, label the acids and bases.
Chm 1046 Ch 15 Acids \& Bases
Page 2 of 9
16-Jun-09 3:56 PM

Bronsted-Lowry Concept of acids and bases

1. A base accepts protons. OH^{-}is only one example
2. Acids and bases can be ions or molecular substances
3. Acid-Base reactions are not restricted to water solutions
4. A species can act as an acid or base, depending upon the other reactant

Concept Check 15.1 Write the acid base equilibrium for formic acid H-CO-OH

3. Lewis Acid Base

Lewis Acid: species that can form a covalent bond by accepting an electron pair from another species. Lewis Base: species that can form a covalent bond by donating an electron pair to another species.

The Lewis and the Bronsted are the same, but the look at different ends of the reactants/products.
The proton accepts the electron pair and is the Lewis Acid

The SO_{3} accepts the electron pair [which moves to the oxygen]. The SO_{3} is the Lewis Acid

Boron TriFluoride accepts the electron pair and is the Lewis Acid

Complex Ions: Aluminum accepts the electron pairs - the Lewis Acid

$$
\mathrm{B}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O} \leftarrow \rightarrow \mathrm{~B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+}
$$

Exercise 15.2
H
Id the Lewis Acids and Bases:

$$
\begin{aligned}
& \mathrm{BF}_{3}+\mathrm{CH}_{3} \mathrm{OH} \leftarrow \rightarrow \mathrm{~F}_{3} \mathrm{~B}: \mathrm{O}-\mathrm{CH}_{3} \\
& \mathrm{O}^{-2}+\mathrm{CO}_{2} \leftarrow \rightarrow \mathrm{CO}_{3}^{-2}
\end{aligned}
$$

Relative Strengths of Acids and Bases:

- Stronger Acids loose their H^{+}ions more easily than other acids.
- An acid base reaction normally goes in the direction of the WEAKER ACID.
- If an acid is STRONG, the acids conjugate base is WEAK
- Saying an acid loses its proton readily is the same as saying it's conjugate base does not hold onto it's proton very tightly [see HCl and Cl^{-}below]
- The strongest acid has the weakest conjugate base
$\mathbf{H C l}+\mathrm{H}_{2} \mathrm{O} \leftarrow \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Strong Acid Base Weak Base Acid

Because the forward reaction occurs almost completely, HCl is a stronger acid than $\mathrm{H}_{3} \mathrm{O}^{+}$ Or you could say $\mathrm{H}_{3} \mathrm{O}^{+}$is a weaker acid than HCl .
$\mathrm{CH}_{3}-\mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \leftarrow \rightarrow \mathrm{CH}_{3}-\mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
0.1 M AcOH goes about 1% ionized. Therefore acetic acid is a weaker acid than $\mathrm{H}_{3} \mathrm{O}^{+}$

HCl and HI dissolved in water are 100% ionized.
But when dissolved in acetic acid, more HI is ionized than HCl . So HI is a stronger acid than HCl .
Water inhibits the LEVELING EFFECT on the strengths of the acids.

Relative Strengths of Acids and Bases			
	Acid	Base	
Strongest acids	HClO_{4}	$\mathrm{ClO}_{4}{ }^{-}$	Weakest
	$\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}^{-}	bases
	HI	I^{-}	
	HBr	Br^{-}	
	HCl	Cl^{-}	
	HNO_{3}	$\mathrm{NO}_{3}{ }^{-}$	
	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	
	HSO_{4}^{-}	$\mathrm{SO}_{4}{ }^{2-}$	
	$\mathrm{H}_{2} \mathrm{SO}_{3}$	$\mathrm{HSO}_{3}{ }^{-}$	
	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	
	HNO_{2}	$\mathrm{NO}_{2}{ }^{-}$	
	HF	F^{-}	
	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$	
	$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$	$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}$	
	$\mathrm{H}_{2} \mathrm{CO}_{3}$	$\mathrm{HCO}_{3}{ }^{-}$	
	$\mathrm{H}_{2} \mathrm{~S}$	HS^{-}	
	HClO	ClO^{-}	
	HBrO	BrO^{-}	
	$\mathrm{NH}_{4}{ }^{+}$	NH_{3}	
	HCN	CN^{-}	
	$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2-}$	
	$\mathrm{H}_{2} \mathrm{O}_{2}$	$\mathrm{HO}_{2}{ }^{-}$	
	HS^{-}	S^{2-}	
Weakest acids	$\mathrm{H}_{2} \mathrm{O}$	OH^{-}	Strongest bases

Example 15.3 Which species is favored: $\mathrm{SO}_{4}^{-2}+\mathrm{HCN} \leftarrow \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{CN}^{-}$
$\mathrm{HSO}_{4}{ }^{-}$is a stronger acid than HCN . $\mathrm{Or}, \mathrm{HCN}$ is a weaker acid than $\mathrm{HSO}_{4}{ }^{-}$ CN^{-}is a stronger base than SO_{4}^{-2} $\mathrm{Or} \mathrm{SO} 4{ }^{-2}$ is a weaker base The reaction will go towards the weaker acid - from Right to Left.

Exercise 15.3 Which species is favored: $\mathrm{H}_{2} \mathrm{~S}+\mathrm{CH}_{3}-\mathrm{COO}^{-} \leftarrow \rightarrow \mathrm{CH}_{3}-\mathrm{COOH}+\mathrm{HS}^{-}$CLASS DO
Molecular Structure and Acid Strength: Two factors determine the relative acid strength 1. Acid Strength - Polarity of the Bond

The more polarized the bond, the easier the molecule can loose the $\mathrm{H}+$. Remember the table on Electronegativity [Table 9.15, page 346].

Acetic Acid is a weak acid, Sulfuric Acid is a very strong acid.
The electronegative Oxygen on the Sulfur make it easy for sulfuric to loose it's H^{+}.

Hydrogen bonded to Oxygen will have a partial positive charge

2. Acid Strength - Strength of the bond

The strength of a bond depends on the size of the X atom. The lager X is, the weaker is the bond and the stronger is the acid strength. [Class Question WHY?].

So, going down the Halogens: $\mathbf{H F}<\mathbf{H C l}<\mathbf{H B r}<\mathbf{H I}$ X radius increases, the acid strength increases.
Going across the periodic table, the electronegativity increases [See Table 9.15] = the HX polarity increases and the acid strength increases.

The Oxoacids: $\quad \mathrm{H}-\mathrm{O}-\mathrm{Y} \quad \mathrm{H}-\mathrm{O}-\mathrm{Cl}<\mathrm{H}-\mathrm{O}-\mathrm{Br}<\mathrm{H}-\mathrm{O}-\mathrm{I}$
In going down the halogens, the electronegativity decreases, so Cl is the most electronegative, it pulls the electrons from the Oxygen and the Hydrogen and the Hydrogen can leave easier so $\mathrm{H}-\mathrm{O}-\mathrm{Cl}$ is the strongest.

Adding more electronegative groups also increases the acidity by withdrawing electrons away from the Hydrogen making it easier for the H^{+}to leave.

$\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{HClO}_{2}>\mathrm{HClO}$ [acid strength increases with more oxygen]
Polyprotic Acids: $\quad \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}{ }^{-1} \rightarrow \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{-2}$
The first H^{+}is lost easily. But due to the negative charge on the $\mathrm{HSO}_{4}{ }^{-1}$ is will hold onto the proton stronger so it will not loose it's H^{+}easily. So, loosing the $1^{\text {st }}$ is easy, the $2^{\text {nd }}$ and $3^{\text {rd }}$ hard.

Self Ionization of Water and $\mathbf{p H}$

Auto Ionization / Amphoteric water:

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \leftarrow \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
$$

$$
\mathrm{Kw}=\rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right]
$$

The concentration of the ions is very small compared to the concentration of water [56 M], so:
CLASS PROVE WATER IS 56 M

$$
\left[\mathrm{H}_{2} \mathrm{O}\right] * \mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C} .
$$

In pure water the OH^{-}and $\mathrm{H}_{3} \mathrm{O}^{+}$are the same:

$$
\begin{aligned}
& \mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& 1.0 \times 10^{-14}=\mathrm{x} * \mathrm{x} \\
& 1.0 \times 10^{-7} \mathrm{M}=\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

Solutions of Strong Acid or Base:

Dissolve 0.10 mole of $\mathbf{H C l}$ in 1.0 L of water and you get $0.10 \mathrm{~mol} / 1.0 \mathrm{~L}=0.10 \mathrm{M} \mathrm{HCl}$.
HCl is a strong acid and is essentially completely ionized: $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
So, starting with 0.10 M HCl , complete ionization, you get $0.10 \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$.

$$
\begin{aligned}
& \mathrm{Kw}=1.0 \times 10^{-14}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=[0.10 \mathrm{M}]\left[\mathrm{OH}^{-}\right] \\
& {\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} /[0.10 \mathrm{M}]=1.0 \times 10^{-13} \mathrm{M}}
\end{aligned}
$$

What is the hydrogen ion concentration in $\mathbf{0 . 0 1 0} \mathbf{M ~ N a O H}$?
NaOH is a strong base and is essentially completely ionized: $\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \mathrm{Kw}=1.0 \times 10^{-14}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][0.010 \mathrm{M}] \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} /[0.010 \mathrm{M}]=1.0 \times 10^{-12} \mathrm{M}}
\end{aligned}
$$

Example 15.4, p 638 Calculate the hydronium and hydroxide ion concentration in $0.15 \mathrm{M} \mathrm{HNO}_{3}$ and 0.010 M $\mathrm{Ca}(\mathrm{OH})_{2}$?

Class Exercise at the Board

Exercise 15.5, Calculate the hydronium and hydroxide ion concentration in $0.125 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$?
Hint: Remember there are $2 \mathrm{OH}^{-1}$ in $\mathrm{Ba}(\mathrm{OH})_{2}$
Summary: \quad Acid Solutions: $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>1.0 \times 10^{-7} \mathrm{M} \quad$ between $10^{-1} \mathrm{M}$ and $10^{-7} \mathrm{M}$
Neutral Solutions: $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$
Basic Solutions: $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<1.0 \times 10^{-7} \mathrm{M} \quad$ between $10^{-7} \mathrm{M}$ and $10^{-14} \mathrm{M}$
Exercise 15.6 The hydroxide ion concentration is $1.0 \times 10^{-5} \mathrm{M}$, is the solution acid, base or neutral?
pH of a Solution: pH is the negative of the \log [base 10] of the molar hydronium ion concentration.

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \text { or } \quad-\log \left[\mathrm{H}^{+}\right]
$$

A solution has the hydronium ion concentration of 1.0×10^{-3}, what is it's pH ?

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left[1.0 \times 10^{-3}\right]=3.00
$$

What is the pH of a neutral solution?

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left[1.0 \times 10^{-7}\right]=7.00
$$

What is the pH of the 0.10 M HCl from above? $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left[1.0 \times 10^{-1}\right]=1.00$
What is the pH of the 0.010 M NaOH from above? $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left[1.0 \times 10^{-12}\right]=12.00$
Example 15.5 What is the pH of orange juice with a hydronium ion concentration of $2.9 \times 10^{-4} \mathrm{M}$?

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left[2.9 \times 10^{-4} \mathrm{M}\right]=3.54 \quad \text { which is less then } 7 \text {, so it's acid }
$$

Exercise 15.7 What is the pH of digestive juice in the stomach with a hydronium ion concentration of 0.045 M?

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \quad \mathrm{pH}+\mathrm{pOH}=14
$$

An ammonia solution has a hydroxide ion concentration of $1.9 \times 10^{-3} \mathrm{M}$, what is the pH ?

$$
\begin{aligned}
& \mathbf{p O H}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left[1.9 \times 10^{-3} \mathrm{M}\right]=2.72 \\
& \mathrm{pH}+\mathrm{pOH}=14 \quad \mathrm{pH}=14.00-\mathrm{pOH}=14-2.72=11.28
\end{aligned}
$$

Exercise 15.8 A calcium hydroxide solution has a hydroxide ion concentration of 0.025 M . What's the pH ?
Exercise 15.9 A soda has a pH of 3.16. What is the hydronium ion concentration?
Exercise 15.10 A 0.010 M ammonia solution has a pH of 10.6. What is the concentration of hydroxide ion?

Acid Base Indicators:

